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Abstract-Analytical expressions are derived for both the maximum slope of exit fluid temperatures 
(fluid temperature transient response) due to a step function inlet fluid temperature change, as based on 
the solution of Hausen’s mathematical model, and for the reduced time at which the maximum slope is 
attained. These expressions are used to demonstrate the existence of a critical N,,-value below which the 
exit fluid temperatures have no point of inflection. Values, accurate to four significant figures, for both 
the maximum slope and reduced time are presented up to N,,-values of ten. It is pointed out that in the 
neighborhood of N,, = 2 even very small errors in the determination of the maximum slope can result 
in significant errors of the corresponding N,,-values. Finally, an asymptotic expression for the maximum 

slope is presented which is of use for large values of N,,. 

NOMENCLATURE 

heat-transfer coefficient [Btu/(h ft’ deg 

VI ; 
total heat-transfer area [ft”] ; 
mass of solid in core [lb] ; 
mass of fluid [lb] ; 
mass-flow rate of fluid [lb/h] ; 
specific heat of solid [Btu/(lb degF)] ; 
specific heat of fluid [Btu/(lb degF)] ; 
distance from test section inlet [ft] ; 
length of solid core [ft] ; 
time [h]; 
temperature of the fluid (gas) [“F] ; 
temperature of the solid [“F] ; 
dimensionless parameter (number of 
transfer units), N,, = hA/wfcf. 

INTRODUCTION 

THE DESIGN of matrix-type gas turbine regenera- 
tors requires accurate heat-transfer data. A 
method of testing the various matrix surfaces 
currently being used is the so-called transient 
technique which involves both an experimental 
apparatus and a mathematical model for the 
single blow problem. For detailed background 
information the reader is referred to such 

standard works as Jakob [l] or Kays and Lon- 

don [2]. In the experimental procedure a 
sample of the matrix is subjected to some 
change of the transfusing fluid at the test 
section inlet and the transient fluid temperature 
at the test-section exit is recorded. 

The mathematical model is provided by 
Hausen’s [3] partial differential equation sys- 
tem. In this model the effects of longitudinal 
heat conduction will be neglected. The heat- 
transfer properties of the matrix surface may, 
in principle, be evaluated by matching the 
recorded transient exit temperatures with the 
computed response curves which have been 
obtained as solutions of Hausen’s equation 
system. 

Locke [4] has demonstrated that the match- 
ings of response curves could be avoided by the 
use of a unique relationship between the 
maximum slopes of response curves and the 
number of transfer units, N,,, for the case that 
the inlet gas temperature change is a step 
function. Locke’s method, known as “maximum 
slope technique” has proved to be a valuable 
tool. The numerical data which were first presen 
ted by Locke [4] were based on an approxima- 
tion which is questionable for very low values of 
N,,,; Locke’s data have subsequently been 
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corrected by improved hnrte difterencc solu- 
tions of Hausen’s equation system and appear 

as such in Kays and London [2]. 

It is the purpose of this paper to show that 

although the relationship between the maxi- 
mum slope and N,, is unique for all values of 

N,,, this relationship is nevertheless singular 
in its behavior for N,,, = 2. The object of this 

paper is to point out a limitation of an accepted 

method and to issue a warning against its 
unrestricted use; it does not offer a new or an 

improved method. It is obvious that a convinc- 
ing case should be based on exact analysis. 

In this paper the dependence of the maximum 
slope on N,, will be expressed by analytic 
expressions and data will be presented which 
are based on exact analysis. It will be shown 

that the exit fluid temperatures have for N,,, T 2 
no points of inflection. It will also be shown that 

the exit fluid temperatures (transient response 

curves) have for N,,, < 2 their maximum 

slopes in the instant when the temperature 
front of the fluid reaches the test-section exit. 

The fact will be pointed out that in the neigh- 
borhood of N,, = 2 even very small errors in 

the determination of the maximum slope can 

result in significant errors of the corresponding 

N,,-values. 

PROBLEM FORMULATION AND ANALYTIC 

SOLUTION 

The heat transfer from a fluid transfusing 

through a porous solid core to the latter can be 
described by the following system of partial 
differential equations : 

Equations equivalent to (1). (2) were stated by 
Hausen [3] and, independently. by Schumann 
[5]. For a discussion of the assumptions which 
lead to these equations, and for further reference, 

see Jakob [l]. 

it is practical to introduce a generalized 
position variable 

and a generalized time variable 

Consequently, in terms of the new independent 

variables z and r, equations (1) and (2) become 

cx; 
;z + G = 5. 151 

(61 

For z and z the designations Hausen’s reduced 

variables, or Nusselt’s variables. are sometimes 
used. 

The analytic solution of the characteristic 
initial value problem, or Goursat problem. as 
posed by equations (5) and (6) together with 
the boundary conditions expressed by 

G&r) /_zo = G(0.t) = g(z). !?) 

S(-_,+j = S(z.0) = S(T). IX) 

can be obtained by a variety of methods. See 
for example, Courant and Hilbert [6] or 

Copson [7]. 
For the particularly simple case that the 

matrix is heated by a unit step change of the 
inlet gas temperature, and the initial tempera- 
ture of the matrix is kept constant, one assumes 

the boundary conditions 

G(0.t) = <I = 1. (Yi 

S(I.0) = s(z) = 0. ( 101 

In this paper, only the case described by 
equations (9) and (10) will bc treated. The exit 
fluid temperature as determined by Hausen’s 
equations (5) and (6) is then given by 
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In equation (11) El(x) denotes pne function 
(k = 1) of a family of functions &(x) of order 
k = 0, 1, 2, . . . which are defined by infinite 
power series : 

e+ ,n 
q&x) = 

t 

* 

n ! (n + k) !’ 
(12) 

k=O 

They are related to the Bessel and modified 
Bessel functions of the first kind and order k by 

rk(2&/(&k, x 2 0, 

ak(x) = J,(2Jx /)/(JIxI)“, x < 0. (13) 

For all E,(x) the following relationship can 
be verified : 

- k%(x)], x # 0. (14) 

It is also possible to express G(z,z) of equa- 
tion (11) by an infinite series. From 

m 

E,(ze) em0 = c Zk tlk 
k!(k+l)! ’ 

k=O 

2 (‘-,j’8’)= 
I=0 

(- Wkzk 
k!(k + l)!(l - k)! 

I=0 k=O 

it follows readily that 

2’ 
- 
l+l 

I=0 
a, 

X (c ( - l)‘_kzk 

k ! (k + 1) ! (I - k) ! 
k=O 

I 
=e-‘{l+zT[,-(I--i); 

+(l-z+$+_3i2+ 

z2 z3 23 
+7-z s+... ) I) 

. 

(15) 

(16) 

It may be remarked here that G(z,z) as given 
by equation (16) is undoubtedly more useful 
for the purpose of numerical evaluation than 
Schumann’s analytical solution [S]. 

DETERMINATION OF MAXIMUM SLOPE 

The derivative of the exit fluid temperature is 

W.&d = z e-‘“+” - 

az fi 1w 

=e - (E + r) JO f L[qz~)]. (17) 

The data in Locke’s [4] report are based on 
an approximation of the expression in (17) ; 
in this paper the numerical evaluation of 
maximum derivatives will be based on exact 
analysis. 

The maximum of aG(z,z)/dz is not, as would 
be desirable from the point of view of a simple 
interpretation, a monotonic increasing function 
of z. For this reason it is useful to change from 
the independent variable r to a new independent 
variable 0, the latter determined by 

+-B (18) 

where c( = wfc,-/Wscs and fi = Wfc,-/W,c, 
The derivative of the exit fluid temperature 

can now be expressed as 

~ = z e-“C1+“) 3,(z2a). 
aa (19) 

The maximum of aG(z, z)/aa which corre- 
sponds to the maximum slope of the graph of 
G(z, 0) is, according to Locke, of particular 
interest : 

wz, 4 m(z) = max ~ 0 d 0 < 1. (20) 
0 aa ’ 

In order to determine m(z) consider first the 
necessary conditions for a relative maximum of 
aG(z, qaa, namely 

a’G(z, a) 

aa = z2e-Z;$_d 
a [e-‘O E,(az2)] 

= zz em2 e-ro[z2 Z2(az2) - z B,(az2)] 

= 0. (21) 
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From (21) follows 

GERHARD F 

E,(G?) 
z=g$j all z > 0. (22) 

Equation (22) defines implicitly a function cr‘,(z). 

The latter corresponds to the locus of all points 
in the (z,o)-plane on which CC,‘& may have a 

relative maximum. 

For convenience let 

Q(x) G g;; (23) 

then 

a,(Z) = j+ Q-'(z), 

where Q-l(.) denotes a function inverse to Q(.). 
Q(x) may be studied in a neighborhood of the 
origin by the power series 

Q(x) = i, c, x”. (25) 
iI=O 

the coefficients of which are determined by 

n-1 

-(l- 6) c ci 

0.n 1 i =. ill - i)! (n - i + 2)! (26) 

The series c c,.? converges for all ix/ < 
n=O 

6.5946. The first few terms are 

Q(x) = 2 + ; x _ 1’6 ?i2 + & x3 

7 -___- 
12960 

.X4 + (27) 

3”(z - 3)& 

8640:’ ’ It may be noted that Q(x) is also well defined 
for those values for which the series does not 
converge, for example by analytic continua- 
tion. Thus one finds 

KOHLMAYR 

Table 1. Mu.hwn slop~~.~ 

The following table presents (1) the maxtmum 
slope m due to a step-function input and (2) 
the reduced time p, (Hausen’r variables) which 
indicates when the maximum slope is reached. 
as a function of the dimensionless heat-transfer 

parameter IV,,, 

IV,” ,,I il, 

2 @5413 I NM.K~ 
7-3 0.5448 0.1576 
2.5 0.553 1 0.2713 
2.75 @5641 W3571 
3 0.5766 0.423X 
3.25 0~5900 0.4774 
3.5 0.6039 05’14 
3.15 0.6180 05583 
3 0.6321 05897 
4.25 0.6463 06167 
4.5 0.6603 06403 
4.75 0.6743 0.66 I 1 
5 @68X0 0.6796 
5.5 0.7151 0.7 1 10 

6 0.7414 0.736’7 
65 0.7670 0.7581 
7 07919 07763 
7.5 0.8161 0.791’) 
8 0.X39 7 0.X055 
X.5 @X627 OX174 
Y 0.8852 0~8279 
9.5 0.9072 0.x373 

IO 0.9286 0.8457 
~. 

The above series can be inverted to grvc 

from (24) and (29) one obtains. tn a neighborhood 
ofr = 2. 

Q(x) 3 2 for all .Y >, 0. (28) 

Again, it may be noted that G,.(.z) is well- 
defined even for those values of z for which the 
series on the right-hand side of equation (30) 
does not converge. Exact maximum siopes ha~c 
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been obtained by computing Q,(Z) and substitut- 
ing the resulting values g = a, in formula (19). 

Exact values, to four significant figures, of 
both m(N,,) and &V,,) = r~,l~=~ are presented 
in Table 1. They are in best agreement with the 
values published by Kays and London [2] 
(Table 3-3, p. 76), but differ from the original 
data presented by Locke [4] (Table 11, p. 91). 

For graphical representation see Figs. 1 and 
L. 

temperature G(z,o) cannot have a point of in- 
flection for z < 2,d > 0; the value z = 2 is the 
greatest lower bound for which inflection points 
can occur. The latter factneeds to be pointed out 
explicitly as it is not immediately apparent from 
a consideration of Locke’s [4] approximate 
analysis, and only implicitly suggested by the 
published data of Kays and London [2]. 

In the interval determined by 0 6 z < 2 the 
absolute maximum derivative of G(z,a) is found 

4” 
FIG. 1. Maximum slope of fluid temperature transient response: 

m(N,“) vs. NC”. 

% 1 2 3 4 5 6 7 0 6 io 

Nt” 

FIG. 2. Reduced time at maximum slope : p,(N,“) vs. IV,,. 

SINGULAR BEHAVIOR OF MAXIMUM to be 
SLOPE AT N,, = 2 Ww) 

Inspectionofequation(30)shows(analvticallv) 
m(z) f max ___ 

0 aa 
r, 

that the exit fluid temperature has no relative = 2’ e-’ El(O) z z* e-‘; (31) 
maximum derivative for z < 2, 0 2 0. Corre- the absolute maximum of the derivative of the 
spondingly, a very smooth graph of the exit fluid exit fluid temperature is reached on the line 
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CJ = 0. The maximum of aG/da at the test-section 
exit is reached at the time t = P/IX, that is in the 
instant when the temperature front has arrived 
at the test-section exit. 

Theoretically, there is a unique relationship 
between max 8G/& and N,, in the interval 

0 < N,, < 2 provided (i) the inlet fluid tempera- 
ture change is actually a step function and (ii) 
the temperature recorders are not lagging. Both 
of these conditions are hardly ever met in practi- 
cal experiments. The slope of the exit gas tem- 
perature at t = P/CC, in the interval 0 < N,,, c 2. 
is the absolute maximum slope. The latter is, 
for all practical purposes, that is when condi- 
tions (i) and (ii) are not strictly satisfied, no 
reliable measure for the heat-transfer properties 
of the matrix to be tested.* 

The following is of practical interest concern- 
ing applications of the maximum slope tech- 
nique in a small neighborhood of N,, = 2 (which 
corresponds to z = 2). The maximum deriva- 
tive can be represented by 

?G(z,o) m(z) = max .--~ 
VI ?a 

; 

-2 -Z 
-e, 06 -<‘7 ” , -, 

= 

I. 

9 exp [ -z( 1 + 013]E,(~26r), 
(321 

->’ - , I. 

The maximum slope m(z) = 2’ e -’ has, for 
z < 2, a relative maximum at : = 3. For 
W(Z) = Z2 exp [-~(1 + ~J~Z”,(Z~CJ,.) one finds 
the opposite: HI(Z) has, for z > 2, a relative 
minimum at L = 2. Visual inspection of Fig. 1 
suggests at once that the maximum slope, as a 
function of N,,, has a point of inflection with 

* In particular, with respect to condition (i). the author 
has studied theoretically the effect of a deviation of the inlet 
fluid temperature change from the step change. on the 
maximum slope. The result of this investigation, which is 
to be published elsewhere, shows that even small deviations 
from the step change may cause the maximum slope to 
become a multiple-vaiued non-monotonic function of N,,, 
whose values may differ significantly from the maximum 
slope due to a step change. 

horizontal tangent at N,, = 2. This fact is 
readily verified by differentiating m(z), as repre- 
sented by equation (32), with respect to Z; for a 
graphical representation of dm(:),‘d,- see Fig. 3. 

For the second derivative of m(z) with respect 
to Z, which is shown in Fig. 4. one finds 

lim d”lll= cP2 # jim f”!’ --_ _ 2 c -‘, 
r~_2m d? -7 (33) 

;_‘3’ I 

that is, the second derivative of m(~) to the right 
is positive and different from the second deriva- 
tive of IX(Z) to the left which is negative: 
d%n(~)jd,_’ has a finite jump discontinuity at 

7 Z = __ 

Both the horizontal tangent of the maximum 
derivative at N,, = 2 and the finite jump- 

discontinuity of d2m/dN;’ is indicative of the 

singular behavior of the maximum derivative 
m(N,,). However, the singular behavior men- 
tioned above is perhaps most suitably illustrated 

by the graph shown in Fig. 5 where the quantity 

has been plotted versus WI. The significance of K 
will c\,ol\c from the follo~\~ing consldcrat 1011. 

It is obvious that any method being used to de- 
termine N,,-values from fluid temperature re- 
sponse curves is limited by aspects resulting 
from a complementing error analysis. An analysis 

of relative errors arising from the application ot 
Locke’s [4] maximum slope technique will he 

given below. 
Let Y)I be the experimentally determined max.]- 

mum slope, Am the absolute experimental error. 
The relative experimental error is then Aw,w. 
For the absolute error in the N,,,-value one has 

for the relative error in the A’,,,-caluc one finds 
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FIG. 3. Derivative of maximum slope with respect to N,:dn~/dN,~ vs. N,,. 

-0.66 
t 2 3 4 6 6 7 s 3 10 

FIG. 4. Second derivative of maximum slope with respect to N,,: d’m/dN~, vs. 

N,, 

Thus K is that factor by which the relative errors 
in the maximum slope have to be multiplied to 
obtain relative errors in the N,,-value. 

Example: m = 0545, Am = 0.02 
Am/m = @0367 (percentage error 

3-7 per cent) 
K = 9.34 
ANJN,, = 0.346 (percentage error 

346 per cent) 

N,, = 2.257 
AN,, = 0.781 

As shown in Fig. 5, as m -+ 0.5413 (N,, + 2) 
so K + 00. Thus the relative errors in N,, are 
unbounded as N,, approaches the value 2. It 
may be worthwhile here to point out that as 
N,, + cc so K --t 2, that is, the relative error in 
N,, is, for large values of N,,, about twice the 
relative error in the maximum slope. 
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FIG 5. Amplification of relative errors: (m~N,,)(dN,,:dn~) vs. ~1. 

The results of the above analysis may be 
summarized in the following prescription: In 
order to obtain reliable N,,-values from the 
application of the maximum slope method 

(9 

(ii) 

(iii) 

do not use the method in the neighbor- 
hood of mcric = 0.5413 (N,, = 2), 
do not use the method for m < 0.5413 

(N,, < 2), 
approximate the inlet fluid temperature 
change as closely as possible by a step 
change. 

One should get satisfactory results using the 
maximum slope method if the above three 
conditions are met, in particular whenever the 
value of K which corresponds to the experiment 
is close to 2.0 and d2pn/dN,2 is negligible. 

APPROXIMATION BY ASYMPTOTIC EXPANSIONS 

For large values of I?,,, it is possible to obtain 
an expression for the maximum derivative by 
the use of asymptotic expansions. Consider the 
function (cf. Jahnke and Emde [S]) 

S,(x) = 1 f c ((v!)-l (4x-)_’ 
v=l 

I”r [4p2 - (211 - I,“]). (37) 
u=l 

In terms of this function one has 

As a consequence the asymptotic expansion 

t = Q(z%) 

( 
1 - __?-._ - ~~. .E_ 

2 + 

I- 

‘“$ ) 

( 

5y;;o (39) 

I~irr + --. 
% 1 512z2g 

defines implicitly a,(z), again in the sense of an 
asymptotic expansion. From equation (39) fol- 
lows, to the same order of approximation 

3 15 Jc, “= 1 - 4z - __2 
322 

(401 

and 
3 3 (7, 2 1 _ .._ - _., 
22 xz2 

(411 

Thus one obtains for the maximum derivative, 
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in the sense of an asymptotic expansion, 

J(> 
f exp [ - z( 1 + C, - 2Ja,)] 

of both theoretical and practical nature for 
small values of N,,. For N,, -C 2 no points of 
inflection exist, for 2 c N,, < 3 the magnifica- 
tion of relative errors is substantial. For moder- 
ate and large values of N,, an approximation 
may be used which is based on asymptotic 
expansions. 

( 3 15 
I-.----- 

162 Jar >i 512z2a t4Jd3. (42) 

Substitution of equations (40) and (41) leads 
to the approximation 

. (43) ACKNOWLEDGEMENTS 

For N,, > 10 one can thus use the formula 

m(N,,) 

E 0*2823JN,, 
0.375 

1 + N + (44) 
fl4 

The functions determined by equations (41) 
and (44) agree, to sufficient accuracy, with the 
logarithmic plots given in Kays and London [2] 
(p. 85, Fig. 3-17). The derivations of this section 
should be considered as a useful fall-out from 
the exact analysis. 

CONCLUSION 

It has been warned against the unrestricted 
use of Locke’s maximum slope technique. Data 
have been presented which were arrived at by 
exact analysis. The fact has been pointed out 
that the maximum slope method has limitations 

2x 

It is suggested that for small values of N,, a 
supplementary method for transient heat-trans- 
fer test-data evaluation is needed. 
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Rksumb-L’auteur obtient des expressions analytiques a la fois pour la pente maximale de la temperature 
de sortie du fluide (reponse transitoire de temperature de fluide) due a une variation en echelon de la 
temperature du fluide a l’entrte, en se basant sur la solution du modele mathematique de Hausen, et 
pour le temps r&tit pour lequel la pente maximale est obtenue. Ces expressions sont employees afin de 
montrer l’existence dune valeur critique de N, au-dessous de laquelle les temperatures de sortie du fluide 
n’ont pas de point d’inflexion. Des valeurs avec quetre chit&s signiflcatifs sont donntes a la fois pour 
le maximum de pente et pour le temps reduit jusqu’a une valeur de N,, egale a 10. 11 est soulignt que 
dans le voisinage de N,, = 2, meme de trts faibles erreurs dans la determination du maximum de pente 
peuvent entrainer des erreurs importantes sur les valeurs correspondantes de N,,. Enfin, une expression 
asymptotique pour le maximum de la pente est presentee, expression utile pour de grandes valeurs de N,,. 

Zusammenfaaaung-Sowohl fur die maximale Neigung des Verlaufs der Austrittstemperaturen (in- 
stationlrer Temperaturverlauf der Fllissigkeit) infolge einer Temperaturlnderung beim Eintritt nach 
einer Schrittfunktion, die auf einer Liisung eines mathematischen Modells nach Hausen beruht. als such 
fur die reduzierte Zeit nach der die maximale Neigung erreicht wird, sind analytische Ausdriicke abgeleitet. 
Mit diesen Ausdriicken wird die Existenz eines kritischen N,,-Wertes nachgewiesen bei dessen Unter- 
schreitung die Kurven ftir die Austrittstemperaturen der Fltissigkeit keine Beugung aufweisen. Bis auf 
vier Stellen genaue Werte, sowohl ftir die Maximalneigung als such Eir die reduzierte Zeit sind fiir N,,- 
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Werte bis zu zehn angegeben. Es wird gezeigt, dass in der Nahe von N,, = 2, selbst fur sehr kleme Fehler 
bei der Bestimmung der Maximalneigung, beachtliche Abweichungen in den entsprechenden N,,-Werten 
auftreten konnen. Schliesslich wird ein asymtotischer Ausdruck fur die Maximalneigung angegeben, der 

fur gross Werte von N,, ntitzlich ist. 

ho--Ha OCHOBe peIIIeHHR MaTeMaTWleCKOfi MOAeJIll Xay3eHa BbIBeAeHhI aHaJ!EITEI- 
~ecK~eBmrpa~eKnH~nHonacaHuHMaKc~ManbKoroHaKnoHa~p~H0iK3~eHeH~HTcMnepaTypbl 
?KHAKOCTM Ha BbIXOAe B pe3yJlbTaTe CTyIIeH~aTOrO H3MeHeHIlR TeMllepaTypbI HUiAKOCTZ Ha 
BXOAe, a TaKWe BbIpa?KeHHe AJIR HpHBeAeHHOrO BpeMeHH, KOTOpOMy COOTBeTCTByeT MaKCII- 
MaJlbHbIt HaKJlOH. 3Tli BbIpaHceHIIH HCIlOJlb3yIOTCfl AJIH IlOATBeplK~eHSUl Cy~eCTBOBaHKFI 
KpElTli'leCKOr03Ha~eHEIflN~u,HUHte KOTOpOrO HaKpllBOti TeMIIepaTypJdH(H~KOCTMHaBbIXO~e 

OTCyTCTByeT TOYHa neperH6a. &IH MaKCHMaJTbKOrO HaKJlOHa II IlpHBeAeHHOrO BpeMeHE IlpM 
Ntu, paBHbIX 10, npllB0~HTcH 3HaqeHm C TOYHOCTbIO A0 YeTblpex 3Hasaqnx qEi+p. OTme- 

yaeTcn,9~0 B o6nacTu Ntu = 2 Aame He6OJIblIIaH IIOrpeIUHOCTb B 0npeAeneHm MaKcmam- 
Hero HaKJIOHa AaeT 3HawiTenbHbIe IIOrpeUIHOcTH B COOTBeTCTByIOIWiX 3HaYeHEIHX Ntu. kl, 
HaKOHeu, IlpHBOAMTCH aCKMllTOTH~eCKOe BbIpaHteHHe AJIH MaKCMMaJlbHOrO HaKJlOHa, MC- 

nonbayemoe np~ 6onbumx 3HaqeHmx Ntu. 


