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Abstract—Analytical expressions are derived for both the maximum slope of exit fluid temperatures
{fluid temperature transient response) due to a step function inlet fluid temperature change, as based on
the solution of Hausen’s mathematical model, and for the reduced time at which the maximum slope is
attained. These expressions are used to demonstrate the existence of a critical N,,-value below which the
exit fluid temperatures have no point of inflection. Values, accurate to four significant figures, for both
the maximum slope and reduced time are presented up to N,,-values of ten. It is pointed out that in the
neighborhood of N,, = 2 even very small errors in the determination of the maximum slope can result
in significant errors of the corresponding N, -values. Finally, an asymptotic expression for the maximum
slope is presented which is of use for large values of N,,.

NOMENCLATURE

h,  heat-transfer coefficient [Btu/(h ft*> deg
F)l;

A, total heat-transfer area [ft*];

W,, mass of solid in core [1b];

W;, mass of fluid [1b];

wy, mass-flow rate of fluid [Ib/h];

¢,  specific heat of solid [Btu/(Ib degF)];

¢y, specific heat of fluid [Btu/(lb degF)];

x,  distance from test section inlet [ft];

L, length of solid core [ft];

t,  time [h];

G, temperature of the fluid (gas) [°F];
temperature of the solid [°F];

w dimensionless parameter (mumber of
transfer units), N,, = hA/wc,.

INTRODUCTION

THE DESIGN of matrix-type gas turbine regenera-
tors requires accurate heat-transfer data. A
method of testing the various matrix surfaces
currently being used is the so-called transient
technique which involves both an experimental
apparatus and a mathematical model for the
single blow problem. For detailed background
information the reader is referred to such
standard works as Jakob [1] or Kays and Lon-
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don [2]. In the experimental procedure a
sample of the matrix is subjected to some
change of the transfusing fluid at the test
section inlet and the transient fluid temperature
at the test-section exit is recorded.

The mathematical model is provided by
Hausen’s [3] partial differential equation sys-
tem. In this model the effects of longitudinal
heat conduction will be neglected. The heat-
transfer properties of the matrix surface may,
in principle, be evaluated by matching the
recorded transient exit temperatures with the
computed response curves which have been
obtained as solutions of Hausen’s equation
system.

Locke [4] has demonstrated that the match-
ings of response curves could be avoided by the
use of a unique relationship between the
maximum slopes of response curves and the
number of transfer units, N,,, for the case that
the inlet gas temperature change is a step
function. Locke’s method, known as “maximum
slope technique” has proved to be a valuable
tool. The numerical data which were first presen-
ted by Locke [4] were based on an approxima-
tion which is questionable for very low values of
N, Locke’s data have subsequently been
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corrected by improved finite difference solu-
tions of Hausen's equation system and appear
as such in Kays and London [2].

[t is the purpose of this paper to show that
although the relationship between the maxi-
mum slope and N, is unique for all values of
N,, this relationship is nevertheless singular
in its behavior for N,, = 2. The object of this
paper is to point out a limitation of an accepted
method and to issue a warning against its
unrestricted use; it does not offer a new or an
improved method. It is obvious that a convinc-
ing case should be based on exact analysis.
In this paper the dependence of the maximum
slope on N,, will be expressed by analytic
expressions and data will be presented which
are based on exact analysis. It will be shown
that the exit fluid temperatures have for N,, < 2
no points of inflection. It will also be shown that
the exit fluid temperatures (transient response
curves) have for N,, < 2 their maximum
slopes in the instant when the temperature
front of the fluid reaches the test-section exit.
The fact will be pointed out that in the neigh-
borhood of N,, = 2 even very small errors in
the determination of the maximum slope can
result in significant errors of the corresponding
N,-values.

PROBLEM FORMULATION AND ANALYTIC
SOLUTION

The heat transfer from a fluid transfusing
through a porous solid core to the latter can be
described by the following system of partial
differential equations:

oG N w,L oG
ct W, ex o, W,
&S hA
ot ey W,

(G = S). {2)

Equations equivalent to (1), (2) were stated by
Hausen [3] and, independently. by Schumann
[5]. For a discussion of the assumptions which
lead to these equations, and for further reference,
see Jakob [1].
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It is practical to introduce a generalized
position variable

and a generalized time variable

hA [ W, x )
=~ fr— - -]
W, c, ( w, L

Consequently, m terms of the new independent
variables z and t, equations (1) and (2) become

°G

Y L=, (5)
(zZ

S .

3o + 5 =G, (6}
T

For z and 7 the designations Hausen's reduced
variables, or Nusselt’s variables, are sometimes
used.

The analytic solution of the characteristic
initial value problem, or Goursat problem, as
posed by equations (5) and (6) together with
the boundary conditions expressed by

Glz,7)|.=0 = G(0.7) = y(1). (7
S(:,r)[T:O = §(z.0) = s(z). (8)

can be obtained by a variety of methods. See
for example, Courant and Hilbert [6] or
Copson [7].

For the particularly simple case that the
matrix is heated by a unit step change of the
inlet gas temperature, and the initial tempera-
ture of the matrix is kept constant, one assumes
the boundary conditions

G(0,7) = g(t) = 1, {9}
S(z.0) = s(z) = 0. (tm

In this paper, only the case described by
equations (9) and (10) will be treated. The cexit
fluid temperature as determined by Hausen's
equations (5) and (6) is then given by

Glzt)=e *[1 + z | B, (0z)e” " dO]. (1)

(
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In equation (11) Z(x) denotes one function
(k = 1) of a family of functions Z,(x) of order
k = 0,1, 2, ... which are defined by infinite
pOWer series:

— x"
Elx) = Z el

k=0

(12)

They are related to the Bessel and modified
Bessel functions of the first kind and order k by

- {Ikwx)/wx)k,
‘ T2 X DA %))

For all Z,(x) the following relationship can
be verified :

dZ) _ 1

dx e+ 1(X) = ; [Ek— 1(x)

—kE(x)], x#0.  (14)

It is also possible to express G(z,7) of equa-
tion (11) by an infinite series. From

- k nk
= —o _ z°
Eief) e = E:mm+nxx
k=0

. ( _ l)l 91
T
1=0
B = 91 = ( _ l)l—k Zk
- ki'(k + 1)1 — k)!
1=0 k=0

it follows readily that

x=0

>

[39]

(13)

=
x<0.

(15)

‘Cl

G(zz)=e % |1 —_
(z7) =¢ [+zr 1

. T=0
(D e
% kKitk + D10 — k) !
k=0
= e"{l + zt [1 - <1 - g)%

+ 1—Z+Z—2‘E—2— 1 3Z+
6/6 2

22 2\
+3—ﬂ>ﬂ+]}

(16)
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It may be remarked here that G(z,7) as given
by equation (16) is undoubtedly more useful
for the purpose of numerical evaluation than
Schumann'’s analytical solution [5].

DETERMINATION OF MAXIMUM SLOPE

The derivative of the exit fluid temperature is
0G(z,7) _
ot

ze D E (z1)

=e*””lj<91iLﬂmﬂ (17)

The data in Locke’s [4] report are based on
an approximation of the expression in (17);
in this paper the numerical evaluation of
maximum derivatives will be based on exact
analysis.

The maximum of 0G(z,1)/é7 is not, as would
be desirable from the point of view of a simple
interpretation, a monotonic increasing function
of z. For this reason it is useful to change from
the independent variable 7 to a new independent
variable o, the latter determined by

x T L
a(oc,ﬂ,t,L)—Z = ozxt g (18)
where « = wc /Wic;and = Wee, /W,

The derivative of the exit fluid temperature
can now be expressed as

0G(z, 1) _ (19)

do
The maximum of dG(z, 1)/dc which corre-
sponds to the maximum slope of the graph of
G{z, o) is, according to Locke, of particular
interest :

[

I

z2 e 2 7 (220).

0G(z, o)
do
In order to determine m(z) consider first the

necessary conditions for a relative maximum of
0G(z, ¢)/00, namely
0%*G(z, o) ; _, 0
%>  °° &
= z2e e *[2? Ey(0z?) — z Ey(07?)]

= 0. (21)

m(z) = max

g

0<o<1 (20

[ E4(02%)]
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From (21) follows

—uTE )l (22)

z > 0.

Equation (22) defines implicitly a function ¢,{z).
The latter corresponds to the locus of all points
in the (z,0)-plane on which éG/0c may have a
relative maximum.

For convenience let

then

1
g,(z) = 3 Q Yz) (24)

where Q(.) denotes a function inverse to Q(.).
O(x) may be studied in a neighborhood of the
origin by the power series
Q(x) = Y ¢, x". (25)
n=0

the coefficients of which are determined by

A PR
n'(n + 1)!

‘ (26)
o (n—iln—i+ 2
o

The series Z ¢, X" converges for all [x| <

n=

6:5946. The first few terms are

x I L, 3
o) 2+§x’§»6'X +270)‘
7 4 n
———1296»x + ... 27

It may be noted that Q(x) is also well defined
for those values for which the series does not
converge, for example by analytic continua-
tion. Thus one finds

Olx) = 2 (28)

for all x = 0.

Table 1. Maximum slopes
The following table presents (1) the maximum
slope m due to a step-function input and (2)
the reduced time u, (Hausen's variables) which
indicates when the maximum slope is reached,
as a function of the dimensionless heat-transfer
parameter N

v

Ny, m i,

2 0-5413 0-0000
225 0-5448 01576
25 0-5531 02714
275 0-5641 0-3571
3 0-5766 (r423%
325 0-5900 04774
35 0-6039 0-5214
375 0-6180 (-5583
4 0-6321 0-5897
425 0-6463 16167
4-5 0-6603 (6402
475 06743 0-6611
s 0-6880 06796
55 0-7151 07110
6 0-7414 7367
65 0-7670 0-7581
7 0-7919 0-7763
73 0-8161 7919
8 0-8397 0-8055
83 0-8627 08174
9 0-8852 (-8279
95 09072 0-8373

(8457

1Y 0-9286

The above series can be inverted to give

32 St
x=3Q - 2)+ i,)(Q -2 + .%6(’) Q — 2
‘;4
Q-2 29)
s640'¢ =)

from (24) and (29) one obtains. in a neighborhood
of z = 2.

e T T T
3z — 2y ,
S -0 (30)
8640-2 g

Again, it may be noted that o/(z) is well-
defined even for those values of = for which the
series on the right-hand side of equation (30)
does not converge. Exact maximum slopes have
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been obtained by computing ¢,(z) and substitut-
ing the resulting values ¢ = o, in formula (19).
Exact values, to four significant figures, of
both m(N,,) and u(N,,) = o,|,=, are presented
in Table 1. They are in best agreement with the
values published by Kays and London [2]
(Table 3-3, p. 76), but differ from the original
data presented by Locke [4] (Table 11, p. 91).
For graphical representation see Figs. 1 and
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temperature G(z,0) cannot have a point of in-
flection for z < 2,6 = 0; the value z = 2 is the
greatest lower bound for which inflection points
can occur. The latter fact needs to be pointed out
explicitly as it is not immediately apparent from
a consideration of Locke’s [4] approximate
analysis, and only implicitly suggested by the
published data of Kays and London [2].

In the interval determined by 0 < z < 2 the

2. absolute maximum derivative of G(z,0) is found
0
T 1 -
o8 {
L]
/
o6 e
m 3 /
o4
o'z\—- .
% ] 2 3 4 5 6 7 ) ) 10
Nlu
FiG. 1. Maximum slope of fluid temperature transient response:
m(N,,) vs. Ny,
1o ]
L e
/
06 e
Hr
04 A
%o i E 3 5 3 7 ) 3 0
Nhl

F1G. 2. Reduced time at maximum slope: #(N,) vs. N,

SINGULAR BEHAVIOR OF MAXIMUM
SLOPE AT N, =2

Inspection ofequation (30)shows (analytically)
that the exit fluid temperature has no relative
maximum derivative for z < 2, ¢ > 0. Corre-
spondingly, a very smooth graph of the exit fluid

to be

m(z) = max
o

0G(z,0)
o

=z2e 75 (0) = z2e7%; (31)
the absolute maximum of the derivative of the
exit fluid temperature is reached on the line
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o = 0. The maximum of ¢G/d¢ at the test-section
exit is reached at the time ¢ = f/a, that is in the
instant when the temperature front has arrived
at the test-section exit.

Theoretically, there is a unique relationship
between max ¢G/0¢ and N, in the interval

0 < N, < 2 provided (i) the inlet fluid tempera-
ture change is actually a step function and (ii)
the temperature recorders are not lagging. Both
of these conditions are hardly ever met in practi-
cal experiments. The slope of the exit gas tem-
perature at t = f/a, in the interval 0 < N, < 2.
is the absolute maximum slope. The latter is,
for all practical purposes, that is when condi-
tions (i) and (ii) are not strictly satisfied, no
reliable measure for the heat-transfer properties
of the matrix to be tested.*

The following is of practical interest concern-
ing applications of the maximum slope tech-

nique in a small neighborhood of N, = 2 (which
corresponds to - = 2). The maximum deriva-
tive can be represented by
0G(z,0)
m(z) = max ——
B ca
{zle‘:, 0<:z<2,
= 32
2exp [—z(1 + 6,)]E,(2%0,). (52
o= 2
The maximum slope m(z) = z* e~ has, for
z < 2, a relative maximum at - = 2. For

m(z) = z* exp [—z(1 + 6,]]E,(z%0,) one finds
the opposite: m(z) has, for z > 2, a relative
minimum at - = 2. Visual inspection of Fig. |
suggests at once that the maximum slope, as a
function of N,,. has a point of inflection with

* In particular, with respect to condition (i), the author
has studied theoretically the effect of a deviation of the inlet
fluid temperature change from the step change, on the
maximum slope. The result of this investigation, which is
to be published elsewhere, shows that even small deviations
from the step change may cause the maximum slope to
become a multiple-vaiued non-monotonic function of N,
whose values may differ significantly from the maximum
slope due to a step change.
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horizontal tangent at N,, = 2. This fact is
readily verified by differentiating m(z), as repre-
sented by equation (32), with respect to z; for a
graphical representation of dm(z);d: see Fig. 3.

For the second derivative of m{z) with respect
to z, which is shown in Fig. 4. one finds

. d?m ., o dim

lim —— =¢e = # lim 5 =

=2 - o2t ot

—2e ™ (33)
that is, the second derivative of m(z) to the right
is positive and different from the second deriva-
tive of mfz) to the left which is negative:
d?m(z)/dz* has a finite jump discontinuity at
[ |

Both the horizontal tangent of the maximum
derivative at N,, = 2 and the finite jump-
discontinuity of d*m/dN}, is indicative of the
singular behavior of the maximum derivative
m(N,,). However, the singular behavior men-
tioned above is perhaps most suitably illustrated

by the graph shown in Fig. 5 where the quantity
d(ln N,,) m dN

m- L=
dm N

Tu

dm

K = REY

tu
has been plotted versus m. The significance of K
will evolve from the following consideration.
It is obvious that any method being used to de-
termine N,-values from fluid temperature re-
sponse curves is limited by aspects resulting
froma complementing error analysis. Ananalysis
of relative errors arising from the application of
Locke’s [4] maximum slope technique will be
given below.

Let m be the experimentally determined maxi-
mum slope, Am the absolute experimental error.
The relative experimental error s then Am,/in.
For the absolute error in the N, -value onc has

dN

AN,, = “Am: {35
dm
for the relative error in the N, -value onc finds
AN I dN
_4_1»“ — . Tt A"l
N N,, dm
N,, A Am
_om ANy A Am )
N, dm mn m
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dm \
deu o2

F1G. 3. Derivative of maximum slope with respect to N,,:dm/dN,, vs. N,

-8
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\

o2

FIG. 4. Second derivative of maximum slope with respect to N,,: d>m/dN2 vs.

Thus K is that factor by which the relative errors
in the maximum slope have to be multiplied to
obtain relative errors in the N -value.

Example: m = 0-545, Am = 0-02

Am/m = 00367 (percentage error
3-7 per cent)

K =934
AN, /N, = 0346 (percentage error
346 per cent)

N

N, = 2257
AN,, = 0781

As shown in Fig. 5, as m — 0-5413 (N,, - 2)
so K — oo. Thus the relative errors in N,, are
unbounded as N,, approaches the value 2. It
may be worthwhile here to point out that as
N, — o0 so K — 2, that is, the relative error in
N,, is, for large values of N,,, about twice the
relative error in the maximum slope.
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The results of the above analysis may be In terms of this function one has
summarized in the following prescription: In

order to obtain reliable N -values from the E E4ix) ;o 12y x)
application of the maximum slope method Q) =+ Zy(x) =X L \/x
{1} do not use the method in the neighbor- —4yx)
hood of m,,;, = 0:5413 (N, = 2), = (Jx ) mww--. x» 0. (38
(i) do not use the method for m < 5413 2( 4/%)
{Nuw < 2),

. . . As a consequence the asymptotic expansion
(111) approximate the inlet fluid temperature 4 ymplotic expansio

change as closely as possible by a step

change. z = Qlz’a) )

One should get satisfactory results using the (l 315 )
maximum slope method if the above three o l6z,/o  512z% 19
conditions are met, in particular whenever the = "'\/0 5 105 (59)
value of K which corresponds to the experiment L~ '1“6”2:/7(; + 51'22““2“‘;[

is close to 2-0 and d*m/dN7, is negligible.

defines implicitly ¢ (2}, again in the sense of an
asymptotic expansion. From equation (39) fol-

APPROXIMATION BY ASYMPTOTIC EXPANSIONS . .
lows, to the same order of approximation

For large values of N,, it is possible to obtain
an expression for the maximum derivative by . 3 15

the use of asymptotic expansions. Consider the Ve El= e o
function (cf. Jahnke and Emde [8]) and
Sixy =1+ vl (4x)” 3

Ax) ;ﬂ> (dx) 6&1a%~@u "

[T [4p* - @u — 17T G37)
w=1

Thus one obtains for the maximum derivative,



TRANSIENT MATRIX HEAT-TRANSFER TESTING 679

in the sense of an asymptotic expansion,

m(z) & =

1
5 \/(%) exp [—z(1 + o, — 2\/0,)]
3 15
(1 " 16z, 512226>/ o). @)

Substitution of equations (40) and (41) leads
to the approximation

Jz 3 705

> Y — 4+ ——| 43
mA) = U Ty sz WY
For N,, > 10 one can thus use the formula

m(N,,)

0375  1:377
~ 0 — ) 44
_02823\/N,,,<1+ . + Nfu) (44)

The functions determined by equations (41)
and (44) agree, to sufficient accuracy, with the
logarithmic plots given in Kays and London [2]
(p. 85, Fig. 3-17). The derivations of this section
should be considered as a useful fall-out from
the exact analysis.

CONCLUSION

It has been warned against the unrestricted
use of Locke’s maximum slope technique. Data
have been presented which were arrived at by
exact analysis. The fact has been pointed out
that the maximum slope method has limitations

of both theoretical and practical nature for
small values of N,,. For N,, < 2 no points of
inflection exist, for 2 < N,, < 3 the magnifica-
tion of relative errors is substantial. For moder-
ate and large values of N,, an approximation
may be used which is based on asymptotic
expansions.

It is suggested that for small values of N,, a
supplementary method for transient heat-trans-
fer test-data evaluation is needed.
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Résumé—L’ auteur obtient des expressions analytiques a la fois pour la pente maximale de la température
de sortie du fluide (réponse transitoire de température de fluide) due & une variation en échelon de la
température du fluide 4 I’entrée, en se basant sur la solution du modéle mathématique de Hausen, et
pour le temps réduit pour lequel la pente maximale est obtenue. Ces expressions sont employées afin de
montrer I'existence d’une valeur critique de N, au-dessous de laquelle les températures de sortie du fluide
n’ont pas de point d’inflexion. Des valeurs avec quetre chiffres significatifs sont données a la fois pour
le maximum de pente et pour le temps réduit jusqu’a une valeur de N,, égale & 10. 1l est souligné que
dans le voisinage de N,, = 2, méme de trés faibles erreurs dans la détermination du maximum de pente
peuvent entrainer des erreurs importantes sur les valeurs correspondantes de N,,. Enfin, une expression
asymptotique pour le maximum de la pente est présentée, expression utile pour de grandes valeurs de N,,.

Zusammenfassung—Sowohl fiir die maximale Neigung des Verlaufs der Austrittstemperaturen (in-
stationdrer Temperaturverlauf der Fliissigkeit) infolge einer Temperaturinderung beim Eintritt nach
einer Schrittfunktion, die auf einer Lésung eines mathematischen Modells nach Hausen beruht, als auch
fiir die reduzierte Zeit nach der die maximale Neigung erreicht wird, sind analytische Ausdriicke abgeleitet.
Mit diesen Ausdriicken wird die Existenz eines kritischen N,,-Wertes nachgewiesen bei dessen Unter-
schreitung die Kurven fiir die Austrittstemperaturen der Fliissigkeit keine Beugung aufweisen. Bis auf
vier Stellen genaue Werte, sowoh! fiir die Maximalneigung als auch fiir die reduzierte Zeit sind fiir Ny-
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Werte bis zu zehn angegeben. Es wird gezeigt, dass in der Nahe von N,, = 2, selbst fiir sehr klemne Fehler

bei der Bestimmung der Maximalneigung, beachtliche Abweichungen in den entsprechenden N,,-Werten

auftreten kénnen. Schliesslich wird ein asymtotischer Ausdruck fiir die Maximalneigung angegeben, der
fiir gross Werte von N, niitzlich ist.

Anmnoramua—Ha ocHOBe pellleHMA MaTeMaTUYeCKONl Mofen XayseHa BHIBEIEHK aHAJIMTH-
YecKne BHPAKEHNA JJIA ONMCAHUA MAKCHMAIBHOTO HAKIIOHA KPUBOM N3MEHEHNUA TCMIIEPATYPH
JKUKOCTH HA BRIXONe B PesyibTaTe CTYNEHYATOrO M3MEHEHHA TeMIepaTypPH KHIIKOCTA Ha
BXOJie, 4 TaKiKe BHpateHue IS IPUBETEHHOTO BPEMEHM, KOTOPOMY COOTBETCTBYET MAKCH-
MaNbHHN HAKIOH., OTH BHPAa:KEeHUA HCIOJBL3YIOTCA A TNOATBEPMIAEHMA CYIIECTBOBAHHMA
KPMTHYECKOTO 8HAYEHUA Nty, HIMKE KOTOPOrO Ha KDPNBO TeMIeparyphl 3HUAKOCTH HA BHXONE
OTCyTCTBYeT TO4Ka Iepernba. A MAKCHMANBHOTO HAKIOHA M TPUBENEHHOI0 BPeMEHH NpH
Ney, paBaux 10, IpUBOAATCA BHAYEHMA ¢ TOUHOCTBIO O YeTHpeX 3HAYammx nudp. Orme-
Yaercs, 4To B 00macTn Niy = 2 Rake HeGOJBIIAA IOIPEIIHOCTH B OTPEJeTeHNN MAKCHMATb-
HOr0 HAKJIOHA JiAeT BHAYMTENbHHE MOrPEIIHOCTH B COOTBETCTBYIOIMX 3HaueHMAX Niw. U,
HAKOHell, TIPHBOJUTCH ACUMOTOTHYECKOe BHpaMeHHe ANA MAKCUMAJBHOTO HAKIOHA, MC-
nojbayemoe npu Gompumx 3HaveRMAX Ney.



